Multi-modal explainable machine learning for exploring consciousness recovery of coma patients

When:
28/02/2025 all-day
2025-02-28T01:00:00+01:00
2025-02-28T01:00:00+01:00

Offre en lien avec l’Action/le Réseau : – — –/– — –

Laboratoire/Entreprise : LIRIS
Durée : 6 mois
Contact : stefan.duffner@insa-lyon.fr
Date limite de publication : 2025-02-28

Contexte :

Sujet :
The first objective of this internship is to study and improve multi-modal Machine Learning models, for the fusion of video and EEG but potentially also EKG data, to predict the situations of our healthy control group. Based on our pre-liminary work on multi-modal LSTM and Transformer models, the aim would be to find characteristic patterns and correlations in the data that represent the different emotional or interactive situations, using eXplainable AI (XAI) techniques such as Integrated Gradient or SHAP.
The second objective would be to adapt these models and methods to DOC patients.

Profil du candidat :

Formation et compétences requises :

Adresse d’emploi :
INSA Lyon – LIRIS
7 Avenue Jean Capelle
69621 Villeurbanne

Document attaché : 202411111700_sujet_stage_M2_agoracoma_fusion1.pdf