SiDoS : similarité de données séquentielles massives @ EGC 2025

When:
28/01/2025 all-day
2025-01-28T01:00:00+01:00
2025-01-28T01:00:00+01:00

Date : 2025-01-28
Lieu : Strasbourg

SiDoS : similarité de données séquentielles massives @ EGC 2025 (27 au 31 janvier à Strasbourg)
https://sites.google.com/view/sidos2025/home

Le 28/01/2025

Date limite de soumissions des papiers : 26/11/2024
Notification aux auteurs : 13/12/2024

Objectifs

De nombreux domaines nécessitent l’analyse de gros volumes de séquences de diverses complexités (en termes de périodicité, complétude, multivariée ou non, etc.) et en particulier de leur similarité. On peut citer les domaines aussi variés que le médical (e.g., stratification de patients, alignements de gènes), le social (analyse de trajectoires sémantiques), la science des données (génération et recommandation de pipelines d’exploration), etc.

SiDoS est le premier atelier portant sur l’optimisation du calcul de distances sur de gros volumes de données de type séquences. Ce thème est à la croisée des domaines HPC (calcul haute performance) et analyse et exploration de données.
Il recouvre différents défis scientifiques : prise en compte de la spécificité des données (séquences, séries, trajectoires, etc.), définition de méthodes de réduction de dimensionalité et indexation, parallélisation du calcul de similarité, adaptation d’approches existantes (par exemple, sur séries temporelles ou données spatio-temporelles), etc.

L’objectif de l’atelier est de structurer la communauté française traitant de séquences massives et du calcul de leur similarité. Il constitue un temps d’échange entre les membres des communautés traitement de la donnée et HPC.

Thèmes de l’atelier (liste non exhaustive)

Définition de similarité entre séquences, spécifique à un type de séquences
Algorithmes de clustering de séquences
Apprentissage de similarité entre séquences
Techniques de réduction de dimensionalité, indexation, hachage, … adaptées aux séquences
Modèles de parallélisme implicite pour l’étude de similarité entre séquences
Utilisation des architectures GPU pour optimiser le calcul de similarité
Modèle de parallélisme pour la similarité sur de larges volumes de données
Adaptation aux séquences des approches sur d’autres types de données (séries temporelles, données spatio-temporelles, etc.)
Présentation d’applications ou de banc d’essais faisant usage de similarité entre séquences

Soumissions

Deux types de soumissions seront possibles :
– Articles courts : de 2 pages à 4 pages maximum
– Articles longs : jusqu’à 12 pages

Les articles longs pourront inclure tout travail de recherche original, description d’application, expérimentation, résumé de papiers internationaux. Les articles courts sont réservés à la description de travaux en cours, de démonstration ou de déclaration d’intention.

Les articles soumis seront relus par 3 membres du comité de programme. Les soumissions devront être au format PDF exclusivement et devront utiliser le format RNTI latex : https://www.editions-rnti.fr/files/RNTI-202208.zip. Les soumissions se feront via easychair (lien à venir).

Comité de programme

Thomas Devogele (LIFAT)
Laurent d’Orazio (Université Rennes, IRISA)
Christel Dartigues-Pallez (Université Côte d’Azur)
Thomas Guyet (INRIA)
Nicolas Hiot (LIFO)
Nicolas Labroche (LIFAT)
Sébastien Limet, (LIFO)
Patrick Marcel (LIFO)
Emmanuel Melin (LIFO)
Sophie Robert (LIFO)
Veronika Peralta (LIFAT)

Organisation

Thomas Devogele, Nicolas Labroche, Veronika Peralta (LIFAT Tours)
Patrick Marcel, Sophie Robert (LIFO Orléans)

Lien direct


Notre site web : www.madics.fr
Suivez-nous sur Tweeter : @GDR_MADICS
Pour vous désabonner de la liste, suivre ce lien.