Offre en lien avec l’Action/le Réseau : – — –/– — –
Laboratoire/Entreprise : CReSTIC
Durée : 4 à 6 mois
Contact : eric.desjardin@univ-reims.fr
Date limite de publication : 2025-02-14
Contexte :
Le cholangiocarcinome intra-hépatique (iCCA) est une tumeur maligne primitive hépatique dont le diagnostic anatomopathologique peut être difficile. L’objectif du projet CholangIA est d’améliorer le diagnostic des lésions ductulaires intra-hépatiques réalisé à partir d’images histopathologiques par les approches de l’Intelligence Artificielle. Une étude bi-centrique a permis de tester les performances de classification binaire et multi-classe des modèles VGG16, MobileNetV2 et ResNet50 [1]. Un premier pipeline de détection a été développé [Figure 1]. Nous souhaitons explorer les mécanismes d’attention et Multiple instance learning [2] afin de pouvoir rendre plus robuste les classifications obtenues.
Ce projet est mené dans le cadre d’une collaboration entre l’équipe AI4M (Artificial Intelligence for Medicine) du laboratoire CReSTIC, l’unité de recherche MEDyC et l’IIAS (Institut de l’IA en Santé) en partenariat avec l’Institut Mondor de Recherche Biomédicale.
Sujet :
Le candidat participera à l’enrichissement des travaux actuels en :
– développant des méthodes explicatives et d’attention de apprentissage profond
– implémentant une approche « Multiple instance learning »
– réalisant les Évaluations & Intégration dans le pipeline d’analyse
Profil du candidat :
Compétences impératives :
• Intelligence artificielle, machine learning, deep learning
• Programmation Python
• Librairies usuelles de deep learning (TensorFlow, Keras. . . )
• Analyse d’images
Compétences souhaitées mais non-indispensables :
• Imagerie histopathologique
• Compétences en calcul intensif
Formation et compétences requises :
Le(la) candidat(e) sera en Master 2 ou en 3e année d’école d’ingénieur.
Adresse d’emploi :
Université de Reims Champagne-Ardenne,
Laboratoire CReSTIC, Campus Moulin de la Housse, site de Reims
Document attaché : 202411221451_Stage CholangIA 2024.pdf