Segmentation d’IRM multiplan par réseaux de neurones profonds

When:
15/01/2025 all-day
2025-01-15T01:00:00+01:00
2025-01-15T01:00:00+01:00

Offre en lien avec l’Action/le Réseau : – — –/– — –

Laboratoire/Entreprise : Laboratoire d’Informatique et Systèmes LIS – UMR
Durée : 5 à 6 mois
Contact : marc-emmanuel.bellemare@univ-amu.fr
Date limite de publication : 2025-01-15

Contexte :
Les troubles de la statique pelvienne représentent un enjeu de santé publique. Ils regroupent un ensemble de pathologies associant une perte des rapports anatomiques normaux des organes pelviens, et une altération dramatique de la qualité de vie des malades. Ces pathologies sont handicapantes à des degrés variés mais leur physiopathologie reste encore mal connue ce qui complique leur prise en charge. Dans le cadre d’une collaboration avec le service de chirurgie digestive de l’AP-HM, de nouvelles acquisitions IRM, associées à une reconstruction adaptée, ont permis la visualisation 3D des organes en mouvement. Des résultats probants ont été récemment obtenus et publiés pour l’observation de la vessie et il s’agit de s’intéresser aux autres organes pelviens

Sujet :
Le stagiaire s’attachera à la segmentation des images acquises lors de l’observation par IRM dynamique des déformations des organes pelviens afin de produire des reconstructions 3D des surfaces en mouvement.
Des acquisitions multi-planaires ont été réalisées dans des plans non classiques ce qui complique la reconnaissance des organes. Ainsi la segmentation des principaux organes impliqués est une étape primordiale mais difficile. Les partenaires cliniciens ont réalisé des segmentations manuelles des organes sur ces plans ce qui permet de disposer d’une vérité-terrain. Nous envisageons de proposer un nouveau modèle de réseau, adapté à la configuration des plans d’acquisition.
Les problématiques de recalage, de segmentation et de modèles 3D, au cœur du projet, seront abordées selon les compétences et préférences du stagiaire.

Profil du candidat :
Le candidat ou la candidate sera intéressé(e) par un projet pluridisciplinaire et par l’imagerie médicale. Les domaines abordés concernent les réseaux de neurones profonds, la segmentation d’IRM et la reconstruction 3D.

Formation et compétences requises :
Des compétences en mathématiques appliquées seront particulièrement appréciées. Une expérience de la programmation avec l’environnement python (PyTorch) serait un plus.

Adresse d’emploi :
Le stage se déroulera à Marseille essentiellement au laboratoire d’informatique et des systèmes (LIS) dans l’équipe Images & Modèles sur le campus de St Jérôme

Document attaché : 202410160845_Sujet_Master2_DL&SegmentationMultiPlan.pdf